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We have measured the short-range attractive force between crystalline Ge plates, and found contribu-

tions from both the Casimir force and an electrical force possibly generated by surface patch potentials.

Using a model of surface patch effects that generates an additional force due to a distance dependence of

the apparent contact potential, the electrical force was parametrized using data at distances where the

Casimir force is relatively small. Extrapolating this model, to provide a correction to the measured force at

distances less than 5 �m, shows a residual force that is in agreement, within experimental uncertainty,

with five models that have been used to calculate the Casimir force.
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Introduction.—The Casimir force has been a subject of
great interest, both theoretically and experimentally, be-
cause it is a macroscopic manifestation of quantum vac-
uum effects [1–3], and it can have significant effects in
nanomechanical systems [4,5]. Despite a number of suc-
cessful measurements celebrated over the last decade [6,7],
early investigations of short-range forces [8,9] report the
possible systematic effects due to residual electrostatic
forces. In particular, the observed variation in the effective
contact potential, recently reported in [10] and later con-
firmed in [11], presents a problem of fundamental impor-
tance when setting limits to predicted submicron
corrections to Newtonian gravity in a Casimir force mea-
surement [12]. The optical response of a particular sample
under study must also be carefully considered [13], as the
accuracy of data on the optical properties of materials
typically limits calculational accuracy to no better than
5%. In principle, both electric and optical studies of a
given sample are subject to a combination of various
surface effects of electric origin, and it is important to
understand these issues in order to accurately characterize
fundamental interactions, such as the Casimir force and
non-Newtonian gravity.

Our torsion balance setup.—In this Letter, we present
results of force measurements between crystalline Ge
plates [14] in a sphere-plane geometry. Our apparatus,
shown schematically in Fig. 1, is based on the design
presented in [15] and improves on the apparatus described
in [6,16]. On one side of a torsion pendulum a flat Ge plate
is mounted, and approached by a Ge plate with a spherical
surface, with radius of curvature R ¼ ð15:10� 0:05Þ cm,
mounted on a Thorlabs T25 XYZ motion stage (8 nm
resolution). When a force exists between these plates, the
torsion body rotates and thereby generates an imbalance in
capacitance on the other side of the pendulum, which
carries a flat plate, situated in between two fixed ‘‘com-
pensator plates’’, that are attached to the support frame. An
ac voltage is applied to the compensator plates, and the
capacitance imbalance creates an ac voltage that is ampli-

fied and sent to a phase sensitive detector (PSD), providing
an error signal to a proportional-integral-differential (PID)
feedback circuit. A small correction voltage (SPID) is ap-
plied to the compensator plates keeping the system in
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FIG. 1. Experimental setup of torsion balance (top view). A
pendulum body of length 15 cm hangs from a tungsten wire
connected to a motorized rotation stage via the pivot point that is
mounted on a support frame. The wire diameter is 25 �m, with
length 2.5 cm, shorter than the previous experiment (66 cm) [6]
in order to minimize effects of tilt of the apparatus. At the
bottom of the pendulum body (not shown in the figure) is a
NdFeB magnet to damp the swinging modes of the pendulum at
a natural frequency of 3 Hz. The mechanical assembly is covered
by a glass bell jar (vacuum 5� 10�7 torr) and is supported on a
vibration isolation slab that has its foundation separate from the
laboratory building.
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equilibrium. The correction voltage is added to a large
constant voltage V0ð� 9 VÞ to linearize the restoring force,
F / ðSPID þ V0Þ2 � V2

0 þ 2V0SPID. This correction volt-

age provides a measure of the force between the Casimir
plates and is recorded during the measurement.

The measured signal SPID has contributions from several
sources:

SPIDðd; VaÞ ¼ Sdcðd ! 1Þ þ SrðdÞ þ Saðd; VaÞ; (1)

where Sdc is the force-free component of the signal at large
distances, Sr is the residual signal due to distance-
dependent forces, such as Casimir-Lifshitz force, and Sa
is the signal due to the electrostatic force in response to an
applied external voltage Va. For the sphere-plane geome-
try, this latter signal can be written in the proximity force
approximation (PFA), valid when d � R, as Saðd; VaÞ ¼
��0RðVa � VmÞ2=�d, where � is a calibration factor that
converts SPID in units of voltage to the actual units of force.
The electrostatic signal is minimized (Sa ¼ 0) when Va ¼
Vm, and the electrostatic minimizing potential Vm is then
defined to be the contact potential between the plates.

A range of plate voltages Va is applied, and at a given
separation the response SPID is fitted to a parabola

SPIDðd; VaÞ ¼ S0 þ kðVa � VmÞ2: (2)

The first two terms in Eq. (1) are absorbed in S0 and
represent the minimized signal when Va ¼ Vm.
Repeating the parabola measurements shown in Fig. 2(a),
sequentially moving from the farthest to closest plate
separations, enables us to inspect the d dependence of
the fitting parameters kðdÞ, VmðdÞ, and S0ðdÞ. The proce-
dure outlined here was first implemented as a calibration
routine in [17] and more recently in [10] in an effort to
detect a distance dependence of Vm.

As the gap between the plates is reduced, the parabola
curvature k rapidly increases as shown in Fig. 2(b). These
curvature values are fitted to kðdÞ ¼ �=d, the expected
dependence for the plane-sphere geometry, where the ab-
solute distance d � d0 � dr is defined in terms of the
asymptotic limit d0 and the relative distance dr recorded
during a parabola measurement. The conversion factor� is
then obtained through � � ��0R=�. Obviously, � can be
also used to determine the absolute distance through d ¼
�=k, implying a significant correlation of � with d0.
Consistency between these two methods of distance deter-
mination reflects validity of the use of the 1=d power law as
implied by a value of �2

0 close to unity for our data set.

Figure 2(c) shows the electric potentials Vm at minima of
the parabola curvatures plotted versus d, indicating the
distance-dependent minimizing potential VmðdÞ, a behav-
ior that has been observed in other experiments [10,11,18].

To see the trend in VmðdÞ more clearly and to determine
short-range forces with higher statistical accuracy, we have
repeated 200 times the experimental sequence described in
Fig. 2, yielding a total of 5800 data points. Each group of

five data points taken at a given fixed distance with varying
applied potential are used to determine the three parabola
parameters discussed above, in addition to the force and
distance. The mean value of the calibration factor after
analyzing all data is � ¼ ð1:35� 0:04Þ � 10�7 N=V.
Both the asymptotic limit d0, shown in Fig. 2(b), and the
dc offset of the PID signals Sdc drift slightly during a run.
The uncertainty in position is roughly 10% at a given
distance and about 50 nm at the typical closest gap sepa-
ration, consistent with the actuator minimum displacement
of 40 nm. The dc offset drift has been corrected by moni-
toring SPID before and after each consecutive run and
applying a linear correction.
Varying minimizing potential.—An outstanding feature

of our data is the distance variation of the applied voltage
Vm that minimizes the force, as clearly shown in Fig. 3. It
must be recognized that this variation can lead to an extra
force of electrical origin, as demonstrated in [19].
However, the model used in [19] assumes that the variation
in the minimizing potential is due to a varying contact
potential, specifically modeled as a voltage source in series
with the plates. The varying minimizing potential observed
in our data is more likely due to large-scale gradients in the
contact potential across the surface of the plates, due to, for
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FIG. 2 (color online). Description of the procedure for force
analysis. (a) A single parabola measurement at a given distance
is acquired by sweeping a range of voltage differentials applied
to the plates. The procedure is repeated at decremental distances
from 150 �m down to 500 nm, completing a single experimental
run. The parabolic curves shown here represent only three
distances, 100 �m, 20 �m, and 1 �m for clarity. (b) Curva-
ture coefficients of the parabola k versus relative distances were
fitted to the 1=d electric force to provide the voltage-to-force
conversion factor � as well as the absolute distance obtained
from an asymptotic limit. (c) The force-minimizing potential Vm

changes with distance. (d) The residual force at the minimizing
potential is plotted against distance, after subtracting the dc
offset Sdc and multiplying it by �. The maximum force gradient
for feedback system stability is 5 nN=�m, limiting the minimum
distance to 500 nm.
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example, polishing stresses or the curvature of the spheri-
cal surface plate changing the crystal plane orientation at
the surface. Such variations have been observed for many
materials [20,21], with typical large-scale fluctuations on
the order of a few mV. The variation in the apparent contact
potential is due to the effective averaging area changing as
the curved and flat surfaces of the plates are brought
together. A numerical analysis [22] of a wide range of
surface potential variations shows that the variation of
VmðdÞ leads to an electrostatic force of the form Fel

r1ðdÞ ¼
�R�0½VmðdÞ þ V1�2=d, where V1 is a constant offset pa-
rameter at large distances that can be determined from the
experimental data. The origin of this effect is due to the
plate curvature, together with large-scale variations in the
surface contact potential. Note that although the parabola
measurement minimizes the electrostatic force across the
plates, it does not necessarily nullify all the electric forces
that possibly exist.

Random small-scale patches.—In addition to large-scale
gradients in the surface potential, there can be small-scale
(i.e., much smaller than the plate diameter) random fluc-
tuations in the surface potential associated with strains,
irregularities, and impurities. It is straightforward to show
that the electrostatic energy per unit area between two flat
plates with random patch voltages is [22,23]

EpatchðdÞ ¼ �0�V
2
rms

4d

Z 1

0
duSðu=dÞ e�2u

sinh2ðuÞ ; (3)

where Vrms is the rms value of the random patch volt-
ages. For simplicity, we have assumed isotropic
patches with surface correlation functions hVk;iVk0;ji ¼

V2
rmsSðkÞ�i;j�ðk� k0Þ, where i, j ¼ 1, 2 denote the plates,

and SðkÞ is the unity-normalized spectral density. The
residual electrostatic force between the sphere and the
plane due to these patches can be obtained from PFA as
Fel
r2ðdÞ ¼ 2�REpatchðdÞ. For example, for random-voltage

patches of radius � uniformly distributed on the sur-
faces, the spectral density is SðkÞ � sink�=�2k2. It is
easy to see that in the limit � � d the residual patch force
in the sphere-plane geometry scales as Fel

r2ðdÞ ¼
�R�0V

2
rms=d [22].

Electrostatic residual force.—We fit the data of the
residual force at the minimizing potential [Fig. 2(d)] with
a force of electric origin Fel

r ¼ F0 þ Fel
r1 þ Fel

r2 ¼
F0 þ �R�0f½VmðdÞ þ V1�2 þ V2

rmsg=d, where F0 is an off-
set parameter at large distances. A least-squares fit of the
observed force using data for d > 5 �m (a regime where
the Casimir force should be vanishingly small) and the
measured VmðdÞ, while leaving F0, V1, and Vrms as adjust-
able fit parameters, yields an excellent description of the
observed large distance force [24], as shown plotted with
the data in Fig. 4. Including data at shorter distances
(d < 5 �m) causes a significant fit deviation, indicating
an interference with the actual Casimir force which is
highly nonlinear at short distances. A similar long-range
force has been previously observed in the measurement of
van der Waals interaction and the corresponding correction
is applied to the data based on work function anisotropies
and their related patch charges [8].
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FIG. 4 (color online). (top) Experimental data from parabola
measurements along with a solid line representing an average.
The joint (contact potential and patch potential) electrostatic
residuals is modeled by Fel

r ¼ F0 þ �R�0f½VmðdÞ þ V1�2 þ
V2
rmsg=d, which is fit to our data points, yielding F0 ¼ ð�11�

2Þ � 10�12 N, V1 ¼ ð�34� 3Þ mV, Vrms ¼ ð6� 2Þ mV, and
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0 ¼ 1:5. (bottom) Experimental data for the remaining force

after subtraction of electrostatic correction Fel
r , together with

theoretical Casimir forces computed using five models described
in [25–27]. For d < 5 �m, �2

0 � 1 with the corrected data for all
of the models.
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FIG. 3 (color online). The value of the force-minimizing po-
tential as a function of plate separation. The red points are the
average of the data. Our measurement reveals a slow rise of the
minimizing potential as the plates approach each other, of order
of 6 mV over 100 �m. This variation in our data set shows a
similar trend observed in a recent measurement [11] where the
variation of 6 mV over 1 �m is reported between Au coated
samples, significantly larger than the value found in our study.
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Casimir residual force.—We have tested our data for the
presence of a residual Casimir force FCas

r ðdÞ between the
Ge plates, which we have computed in PFA from the plane-
plane Casimir-Lifshitz energy, FCas

r ðdÞ ¼ 2�RECas
pp ðdÞ. We

have calculated the corresponding reflection coefficients
using five different theoretical models for the Ge plates
[25–27]: ideal dielectric; ideal dielectricþ Drude conduc-
tivity corrections; ideal dielectricþ plasma conductivity
corrections; quasistatic Debye-Hückel screening model;
and charge drift model. Figure 4 (bottom) shows the ex-
perimental data for the residual force after subtraction of
the joint (contact potential and patch potential) electro-
static forces, and the theory curves for the Casimir-Lifshitz
force between Ge plates at T ¼ 300 K for these five theo-
retical models. The error bars take into account all statis-
tical uncertainties (2%–3%) as well as fitting uncertainties
from the electrostatic force analysis (10%). Within experi-
mental uncertainty, our data agrees well with the theoreti-
cal predictions for the Casimir force, but it is not of
sufficient accuracy to distinguish among the different mod-
els for the Ge plates. High precision measurements of the
Casimir force require a careful evaluation of the electro-
static effects considered in detail for the first time in our
present study.

Conclusions.—We have performed measurements of the
short-range force between Ge plates in the sphere-plane
geometry, and have observed that the potential Vm that
minimizes the electrostatic force depends on the gap be-
tween the plates. We have considered two contributions of
electric origin present in the residual data for the force. The
first contribution is due to large-scale variations in the
contact potential along the surface of the plates, that leads
to the gap-dependent minimizing potential and, as a result,
to an electrostatic force proportional to ½VmðdÞ þ V1�2=d.
The second contribution can be modeled as arising from
potential patches on the surfaces that, in the case when they
have typical sizes much smaller that the plate diameters
and much larger than the plate separation, leads to a further
electrostatic force proportional to V2

rms=d. We have fitted
our experimental data at large distances (d > 5 �m, where
the Casimir force is expected to be negligible) with these
two electrostatic force effects, and found we could estab-
lish good agreement between our model and the experi-
mental data. Furthermore, we have subtracted these forces
from the data at short separations (d < 5 �m) and found a
residual force that is in agreement with the theoretical pre-
dictions for the Casimir-Lifshitz force between Ge plates.
Our measurements do not have enough accuracy to distin-
guish between the different theoretical models used to
characterize the optical properties of the Ge plates. Fu-
ture measurements are deemed necessary in light of our
discussion, in particular, to better understand the physical
origins of the observed electrostatic forces. We are cur-
rently exploring similar surface effects in a pair of Au
samples.
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